WILEY, REIN & FIELDING

1776 K STREET, N.W.
WASHINGTON, D.C. 20006
(202) 429-7000

ERIC W. DESILVA (202) 828-3182 EDESILVA@WRF.COM

September 26, 1997

FACSIMILE (202) 828-4969

EX PARTE OR LATE FILED

John Cimko, Chief Wireless Telecommunications Bureau Policy Division Federal Communications Commission 2025 M Street, N.W. Washington, D.C. 20554

RECEIVED

SEP 2 6 1997

FEDERAL COMMUNICATIONS COMMISSION OFFICE OF THE SECRETARY

Re: Follow Up on Motorola Ex Parte Presentation on September 15, 1997 Regarding Enhanced 911 Services; CC Docket No. 94-102

Dear John:

On behalf of Motorola, Inc. ("Motorola"), I wanted to thank you, Ron Netro, Dan Grosh and Won Kim for taking the time to meet with Mary Brooner, Mark Birchler, and I on September 15, 1997, to discuss E911 automatic location technology. As we discussed at the meeting, I have enclosed non-proprietary copies of the presentation Mark used at the meeting.

Please do not hesitate to call me at (202) 828-3182 if any questions arise concerning this material.

Sincerely,

Eric W. DeSilva

Enclosures:

Presentation

cc:

Ronald Netro

Daniel Grosh

Won Kim

William Caton (for CC Docket No. 94-102 Ex Parte File)

No. of Copies rec'd_ List ABCDE

TERRESTRIAL RF LOCATION SYSTEM ACCURACY

Mark A. Birchler

Principal Staff Engineer

LMPS Research

Motorola

(847) 576-0952, birchler@rsch.comm.mot.com

TDOA Location Finding Fundamentals

- Measurements to at Least 3 Sites Required for a Complete Solution
- Minimizes Deployment Costs
 - Allows Reuse of Site/Subscriber Antenna Systems
- Technology of Choice for Other Key Players (e.g., Associated Group)

Sources of Error: Environmental

TDOA Based Location System Assumed

Noise

- Undesired Process Added to Desired Signal in the Receiver Front End
- Accuracy Degradation Inversely Proportional to Measurement Average Time

Fading

- Variation of the Received Signal Power due to Scattering Environment
- Accuracy Degradation Inversely Proportional to Measurement Average Time

Distortion

- Desired Signal Altered due to Hardware/Software Imperfections
- May Induce Measurement Bias which Is Not Reducible by Averaging

Co-Channel Interference

- Reception of Undesired Signals Operating on the Same Carrier Frequency
- $_{\sim}$ May Induce Measurement Bias if Interfering Signal is Similar to the Desired

Multi-Path Propagation

- Reception of Multiple Copies of the Desired Signal due to Reflection Off of Buildings, Mountains, etc.
- Induces Measurement Bias which Is Not Reducible by Averaging

Multipath Propagation: First Arrival = Line-of-Sight Path

- Optimum Location Solution Requires Isolation of "First Arrival" Signal
- Ability to Detect "First Arrival" Dependent on Signal Bandwidth & S/N
- Unresolvable Signal Components Bias Measurement
 - Results in an Irreducible Limit on Accuracy
 - Limit Depends on Signal Bandwidth and S/N

Multipath Propagation: First Arrival ≠ Line-of-Sight Path

- The "First Arrival" May Not Have Traversed the "Line-of-Sight" Path
 - Most Location Finding Techniques Assume Access to the Line-of-Sight Path
- Causes an Irreducible Lower Limit on Location Accuracy for Most Systems

Sources of Error: System

Geometry

- Arrangement of Sites/Subscriber in Space Affects Accuracy
- Geometrical Effect Acts as a "Magnification Factor" on Measurement Errors
 - > Referred to as Horizontal Dilution of Precision (HDOP) in Navigation Theory
 - → [Location Error S.D.] = [HDOP] X [Raw Time Measurement Error S.D.] X [Speed of Light]

Time Reference

- Accuracy of Local Clock in Measurement System Affects Accuracy
- This Error Component Effectively Canceled Out in TDOA Systems

Site Location

- Site Locations Must be Known to High Accuracy (e.g., 3 meters)
- Possible Using Modern Survey Techniques

System Calibration

- Means of Measuring and Correcting for these Errors to a High Degree of Accuracy Must be Employed
 - > Corrections at Initial System Setup
 - Monitoring of Errors Over Time

Location System Error Budget Calculation

- Assumptions
 - ALL Error Sources Behave Like Noise (Simplistic/Optimistic)
 - HDOP = 1.0 (Optimistic)
- Time Measurement Errors Converted to Range Errors
 - RF Signals Propagate at the Speed of Light (~300,000,000 meters/second)
 - Therefore, a 3.3 nano-second Time Error Translates to an Equivalent Range Error of 1 meter
- Error Sources Combined in Root Mean Square Fashion
 - $_{\ \ \ }$ Given $\mathbf{e_1}$, $\mathbf{e_2}$, and $\mathbf{e_3}$
 - $-E = sqrt[e_1^2 + e_2^2 + e_3^2]$
 - Error Sources Characterized in terms of Standard Deviation

Location Estimation Error Budget

- Total Error Standard Deviation from ALL Sources Required to Support X m at Y% Accuracy:
 - 125 meter Total Error: X = 125 meter at Y = 67%
 - 7.5 meter Total Error: X = 12.2 meters (40 feet) at Y = 90%
- Error Source Magnitude Examples
 - Site Location: 3 meters
 - System Calibration: 15 meters
 - Noise: 75 meters
 - Multipath: 90 meters
 - All Others: 25 meters
 - Total of All Error Sources: 121 meters = $sqrt(3^2 + 15^2 + 75^2 + 90^2 + 25^2)$
- The 125 m at 67% Goal is Achievable
- The 12.2 m at 90% Goal is Not Achievable
 - Note that this Performance is Unobtainable even if all Error Source Magnitudes are Reduced by an Order of Magnitude
 - This level of performance is not achievable by GPS
 - Suburban Environment: 30 meters at 90%
 - Urban Environment: 55 meters at 90%

Other Location Systems

<u>Company</u> <u>Technology</u> <u>Type</u>

Accucom AOA and Signal Infrastructure Overlay

Strength

Associated Group TDOA Infrastructure Overlay

KSI AOA Infrastructure Overlay

US Wireless "Channel Signature" to Infrastructure Add-On

Location Mapping

Tendler GPS Subscriber Based

Each System Will Have a Multiple Item Error Budget

2 Some Common Items with TDOA (e.g., Noise, Site Location, Distortion, etc.)

- Some Different Items from TDOA (e.g., Phase Calibration, Training Errors, etc.)

* Accountability for Performance Claims can be Encouraged by Requesting Error Budgets from Companies